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Abstract

Thermal properties of soils are of great importance in view of the modern trends of utilizing the subsurface for transmission of either heated
fluids or high power currents. For these situations, it is essential to estimate the resistance offered by the soil mass in dissipating the heat generated
through it. Several investigators have tried to develop mathematical and theoretical models to estimate soil thermal resistivity. However, it is evident
that these models are not efficient enough to predict accurate thermal resistivity of soils. This is mainly due to the fact that thermal resistivity of soils
is a complex phenomenon that depends upon various parameters viz., type of the soil, particle size distribution and its compaction characteristics
(i.e., dry density and moisture content). To overcome this, Artificial Neural Network (ANN) models, which are based on experimentally obtained
thermal resistivity values for clay, silt, silty-sand, fine- and coarse-sands, have been developed. Incidentally, these soils are the most commonly
encountered soils in nature and exhibit entirely different characteristics. The thermal resistivity of these soils, corresponding to their different
compaction states, was obtained with the help of a laboratory thermal probe and compared vis-à-vis those obtained from the ANN model. The
thermal resistivity of these soils obtained from ANN models and experimental investigations are found to match extremely well. The performance
indices such as coefficient of determination, root mean square error, mean absolute error, and variance account for were used to control the
performance of the prediction capacity of the models developed in this study. In addition to this, thermal resistivity of these soils obtained from
ANN models were compared with those computed from the empirical relationships reported in the literature and were found to be superior. The
study demonstrates the utility and efficiency of the ANN model for estimating thermal resistivity of soils.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Soil resistivity is a complex property that depends mainly
on the type of the soil, moisture content, particle size distribu-
tion, and closeness of packing of the grains. The type of soil is
considered to be an important factor for determining its thermal
resistivity [1,2]. It has also been demonstrated that soil resistiv-
ity is affected easily by the conditions in which it is formed [3].

Since the conduction through soil is largely electrolytic, the
amount of water present in soil plays an important role in deter-
mining its resistivity [2]. Normally, dry soils depict low conduc-
tivity [2], mainly due to the presence of air (a poor conductor
and its resistivity value being 4000 ◦C cm/Watt), which sepa-
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rates the solid grains (resistivity equal to 4 ◦C cm/Watt) of the
soil. If the moisture content (for water, the resistivity value
is 165 ◦C cm/Watt) of the soil increases, its conductivity in-
creases [1]. As such, a saturated soil has high conductivity as
compared to the water [4].

It has been demonstrated by earlier researchers that the soil
thermal resistivity at first falls rapidly as moisture content in-
creases, however, after achieving the critical moisture content, it
attains almost a constant value [5,6]. This is best accomplished
with well-graded sand to fine gravel (sound mineral rock), with
a small percentage of fines (silt and clay), that can be eas-
ily compacted to a high density [7]. For maximum density the
smaller grains efficiently fill the spaces between the larger par-
ticles, and the fines enhance the moisture retention [1]. A sound
mineral aggregate, without organics, and without porous par-
ticles, ensures effective thermal conduction. The particle size
and its distribution also have an effect on the manner in which
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Nomenclature

γd dry unit weight of the soil
μ momentum factor
ρ resistance per unit length
b parameter
D particle diameter . . . . . . . . . . . . . . . . . . . . . . . . . . mm
D10 particle diameter finer than 10%
D30 particle diameter finer than 30%
D50 particle diameter finer than 50%
D70 particle diameter finer than 70%
emax, emin maximum and minimum void ratio, respectively
G specific gravity
H1, H2, H3 input elements
i current
MAE mean absolute error
N number of the samples
Nhl number of neurons in the hidden layer
Q heat input

R1 output element
RMSE root mean square error
RT thermal resistivity . . . . . . . . . . . . . . . . . . ◦C cm/Watt
RT(ANN) thermal resistivity estimated from ANN

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◦C cm/Watt
RT(Expt.) experimentally obtained thermal

resistivity . . . . . . . . . . . . . . . . . . . . . . . . . ◦C cm/Watt
VAF variance account for
var variance
w water content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . %
x actual value
xmax maximum value
xmin minimum value
xnorm normalized value
y measured value
ŷ predicted value
Yi , Yj hidden neurons
the moisture is held. With large sized grains, the pore space
available will be higher (due to the presence of air) resulting in
higher resistivity or lower conductance [4]. However, for well-
graded soil, higher soil density can be achieved by compaction
(the space between the large grains becomes occupied by the
smaller ones) and hence they exhibit less resistivity. Also, if the
size and shape of the grains are in such a way that they form
a compact dense structure then the resistivity of the soil de-
creases [1].

Various investigators have made attempts to develop re-
lationships to estimate thermal resistivity of soils by taking
into account its different physico-chemical properties. In gen-
eral, these relationships can broadly be categorized under two
groups: (1) empirical relationships that are based on data ob-
tained by measurements; and (2) theoretical equations, which
are based on idealized models wherein the actual soil structure
is simplified. However, these relationships suffer from limita-
tions in terms of proper incorporation of various factors affect-
ing a complex mechanism like soil thermal resistivity [4,6,7].

In recent years, Artificial Neural Networks (ANNs) has been
employed, quite frequently, as a promising tool for supporting
the modeling of complicated systems, which incorporate multi-
ple parameters or variables [8,9]. An ANN presents a computa-
tional mechanism that is able to acquire, represent and compute
a mapping from one multivariate space of information to an-
other, given a set of data representing that mapping.

With this in mind, an attempt was made to develop ANN
models for predicting thermal resistivity of soils and these de-
tails are presented in this paper. To achieve this, the thermal
resistivity of clay, silt, silty-sand, fine- and coarse-sands, com-
pacted to various dry densities and moisture contents, were
measured using a laboratory thermal probe. To demonstrate the
efficiency of the ANN models, the results obtained were com-
pared with those obtained from experimental investigations and
empirical relationships, which are reported in the literature.
2. Details of the neural network

An Artificial Neural Network (ANN), by means of its ar-
chitecture, attempts to simulate the biological structure of the
human brain and nervous system [10–12]. This network con-
sists of three or more layers; an input layer, one or more hidden
layers, and an output layer. Each layer consists of a number of
interconnected processing elements, commonly referred to as
neurons. These neurons interact with each other via weighted
connections. Each neuron is connected to all the neurons in the
next layer. In the input layer, data are presented to the neural
network, while the output layer holds the response of the net-
work to the input. The hidden layers enable these networks to
represent and compute complicated associations between inputs
and outputs. This ANN architecture is commonly referred to
as a fully interconnected feed-forward multi-layer perceptron
(MLP). A typical ANN architecture consisting of H1, H2 and
H3 as the input elements, Yi and Yj as the hidden neurons and
R1 as the output, is depicted in Fig. 1.

The usage of a number of hidden layers in the ANN depends
on the degree of complexity in the pattern recognition prob-
lem, and one or two hidden layers are found to be quite useful
for most problems [13–15]. Also, the number of neurons in the

Fig. 1. The ANN architecture.



Y. Erzin et al. / International Journal of Thermal Sciences 47 (2008) 1347–1358 1349
hidden layers depends on the nature of the problem, and various
methods have been employed by several researchers to deter-
mine them [16–21]. However, these methods present general
guidelines only for selection of an adequate number of neurons.

The most popular neural-network paradigm is the back-
propagation learning algorithm [14,21–26]. The back-propaga-
tion neural network has been applied with great success to
model many phenomena in the field of geotechnical and geoen-
vironmental engineering [27–31]. Each hidden and output neu-
ron processes its input(s) by multiplying each by its weight,
summing the product, and then processing the sum using a non-
linear transfer function, (also called an ‘activation function’),
to obtain the desired result. The most common transfer func-
tion implemented in the literature is the sigmoid function. The
neural network “learns” by modifying the weights of the neu-
rons in response to the errors between the actual output values
and the target output values. This is carried out through gradi-
ent descent on the sum of the squares of the errors for all the
training patterns [22,27]. The changes in the weights are pro-
portional to the negative of the derivative of the error term. One
pass through the set of training patterns, together with the as-
sociated updating of the weights, is called a cycle or an epoch.
Training is carried out by repeatedly presenting the entire set
of training patterns (updating the weights at the end of the each
epoch) until the average sum squared error over all the training
patterns is minimal and within the tolerance specified for the
problem.

At the end of the training phase, the neural network should
correctly reproduce the target output values for the training
data; provided errors are minimal (i.e. convergence occurs).
The associated trained weights of the neurons are then stored
in the neural network memory. In the next phase, the trained
neural network is fed a separate set of data. In this testing
phase, the neural network predictions using the trained weights
are compared to the target output values. The performance
of the overall ANN model can be assessed by several crite-
ria [32–35]. These criteria include coefficient of determination
R2, root mean squared error, mean absolute error, minimal ab-
solute error, maximum absolute error and variance account for.
A well-trained model should result in an R2 value close to 1
and small values of error terms.

In this study, the prediction of thermal resistivity of soils has
been modeled using the ANN in which network training was ac-
complished with the neural network toolbox written in Matlab
environment [36]. The Levenberg–Marquardt back-propagation
learning algorithm [36] was used in the training stage. Details
of the experimental investigations, which have yielded the data
used in ANN models, are presented in the following section.

3. Experimental investigations

Soils such as clay (black cotton soil), silt (fly ash), silty-sand,
fine-sand and coarse-sand were selected for the present study
for their thermal resistivity measurements at different densities
and moisture contents [37]. These soils were characterized for
their physical and index properties, as depicted in Table 1, and
their gradational characteristics are presented in Fig. 2.

A thermal probe, which operates on the “Transient method”
[38,39], was fabricated and used in this study. As depicted in
Fig. 3, the probe consists of an insulated Nichrome heater wire
of resistance, ρ (= 0.19 �/cm), inserted in a copper tube of
140 mm length and external diameter equal to 2.5 mm. A ther-
mocouple is attached on the surface of the tube as shown in

Fig. 2. Gradational characteristics of the soils used in the study.
Table 1
Properties of the soils used in the present study

Soil property Block cotton Silt (fly ash) Silty-sand Fine-sand Coarse-sand

G 2.72 2.14 2.78 2.63 2.65
Clay fraction (%) 96 10 1 0 0
Silt fraction (%) 4 90 47 0 0
Sand fraction (%) 0 0 52 100 100
Liquid limit (%) 67 – 41 – –
Plastic limit (%) 34 – 28 – –
USCS CL CL SC – –
emax – – – 0.781 0.765
emin – – – 0.540 0.623
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Fig. 3. The thermal probe.

Fig. 4. Variation of thermal resistivity with moisture content for the black cotton
soil.

the figure. The heat input per unit length, Q, is equal to i2.
ρ (in Watt/cm), where, i is the current passing in the heater
wire. The calibration of this probe was achieved by using a
standard liquid glycerol with thermal resistivity, RT, equal to
349 ◦C cm/Watt [37,40]. The RT of the glycerol is found to
be equal to 357 ◦C cm/Watt (for i = 0.5 Amp), which is only
2.4% higher than its standard value. A metal container (150 mm
long and 100 mm diameter) was used to prepare the soil sam-
ples corresponding to a particular density and moisture content.
A 2 mm-diameter hole was drilled in the soil sample and the
Fig. 5. Variation of thermal resistivity with moisture content for the silt.

thermal probe was fitted tightly into it. The probe was allowed
to achieve thermal equilibrium in the soil mass for some time
(5 min approx.) and then the power supply to the probe was
switched on. The temperature of the probe was recorded as a
function of time and was used to compute the thermal resistiv-
ity of the soil.

The variation of RT with water content, w, for the clay, silt,
silty-sand, fine- and coarse-sands is presented in Figs. 4 to 8,
respectively, for the achieved dry density, γd, values. It can be
observed from these figures that, in general, the resistivity de-
creases as the moisture content of the soil increases, for a given
compaction state of the soil. As water is added to the soil, it
forms a thin film on the soil particles which eases the flow of
heat. This may be attributed to the fact that the thermal resis-
tivity of air (= 4000 ◦C cm/Watt) is higher than that of water
(= 165 ◦C cm/Watt). Further, addition of moisture to the soils
results in replacement of air in the voids (and hence the density
increases) by the pore water thus reducing the thermal resis-
tivity of the soil in the near vicinity of its optimum moisture
content (OMC). As such, the soil attains almost a constant re-
sistivity value that is the minimum resistivity it can exhibit.
A reduction in the thermal resistivity of the soil has been ob-
served with increasing density, from the resistivity curves. This
is due to the improvement in contact between soil particles,
which leads to better conduction of heat.

4. Development of ANN models

As discussed earlier, soil parameters viz., type, gradational
characteristics, moisture content and dry density, greatly affect



Y. Erzin et al. / International Journal of Thermal Sciences 47 (2008) 1347–1358 1351
Fig. 6. Variation of thermal resistivity with moisture content for the silty-sand.

Fig. 7. Variation of thermal resistivity with moisture content for the fine-sand.

its thermal resistivity. Therefore, ANN models were developed
independently for clay (designated as ANN-C), silt (ANN-S),
silty-sand (ANN-SS), fine- and coarse-sands (ANN-FS and
ANN-CS), respectively. In addition, a generalized ANN model
(ANN-G), which accounts for different soils compacted to dif-
ferent states was developed by using the experimental data.
Individual ANN models have two input parameters (w and γd),
while, the ANN-G model has six input parameters (D10, D30,
D50, D70, w and γd). All these models have one output para-
Fig. 8. Variation of thermal resistivity with moisture content for the coarse-sand.

Table 2
Boundaries of the input and output parameters used for developing ANN mod-
els for individual soils

Model Input parameter Output parameter

w (%) γd (g/cc) RT (◦C cm/Watt)

Min. Max. Min. Max. Min. Max.

ANN-C 0 30 1.0 1.4 203 1157
ANN-S 0 35 1.0 1.1 238 1104
ANN-SS 0 32 1.3 1.4 73 409
ANN-FS 0 11 1.5 1.72 34 332
ANN-CS 0 6 1.5 1.6 77 276

Table 3
Boundaries of the input and output parameters for the model ANN-G

Parameter Symbol Min. Max.

Input

D10 (mm) 0.2 670
D30 (mm) 0.6 1000
D50 (mm) 0.7 1425
D70 (mm) 0.8 1775
w (%) 0 35
γd (g/cc) 1 1.7

Output RT (◦C cm/Watt) 34 1157

meter RT. The boundaries for input and output parameters of
the models are listed in Tables 2 and 3. The input–output data
of each ANN model were scaled to lie between 0 and 1 by us-
ing Eq. (1).

xnorm = (x − xmin)

(xmax − xmin)
(1)

where xnorm is the normalized value, x is the actual value, xmax

is the maximum value and xmin is the minimum value.
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It is a common practice to divide the available data into two
subsets; a training set, to construct the neural network model,
and an independent validation set to estimate model perfor-
mance in the deployed environment [41]. However, dividing
the data into only two subsets may lead to model over fitting.
Over fitting makes multi-layer perceptrons (MLPs) memorize
training patterns in such a way that they cannot generalize
well to new data [34]. As a result, the cross validation tech-
nique [42] was used as the stopping criterion in this study. In
this technique, the database is divided into three subsets: train-
ing, validation and testing. The training set is used to update the
networks’ weights. During this process the error with the vali-
dation set is monitored. When the validation set error begins to
increase, training is stopped because it is considered to be the
best point of generalization. Finally, the testing data are fed into
the networks to evaluate their performance. Therefore, in total,
56% of the data were used for training, 24% for testing, and
20% for validation for each model developed in this study.

It has been shown that a network with one hidden layer can
approximate any continuous function, provided that sufficient
connection weights are used [43]. Consequently, one hidden
layer was used in all the models. The neural network toolbox of
MATLAB7.0, a popular numerical computation and visualiza-
tion software [34], was used for training and testing of MLPs.
The optimum number of neurons in the hidden layer of each
model was determined by varying their number by starting with
a minimum of 1 and then increasing the network size in steps
by adding 1 neuron each time. Different transfer functions (such
as log-sigmoid [44] and tan-sigmoid [13]) were investigated to
achieve the best performance in training as well as in testing.
Two momentum factors, μ (= 0.01 and 0.001), were selected
for the training process to search for the most efficient ANN
architecture; the maximum number of training epochs to train
was chosen as 1000. The coefficient of determination R2 and
the mean absolute error MAE were used to evaluate the per-
formance of the developed ANN models. The performance of
the network during the training and testing processes was ex-
amined for each network size until no significant improvement
occurred.

The detailed information about the optimal performance of
different ANN models is presented in Table 4. Connection
weights and biases for different ANN models are presented in
Tables 5 and 6. A comparison of experimental results with the
results obtained from different ANN models, for training, vali-
dation, and testing samples, is depicted in Figs. 9 to 14. It can
be noted from these figures that, in general, RT values obtained
from ANN models are quite close to the experimentally ob-
tained RT values. This shows that the ANN models are able
to predict thermal resistivity of different types of soils quite ef-
ficiently.

5. Performance assessment of ANN models

The data measured and predicted from ANN models are de-
picted in Figs. 9 to 14. In fact, the coefficient of correlation
between the measured and predicted values is a good indica-
tor to check the prediction performance of the model [45]. In
Fig. 9. Comparison of experimental results with the results obtained from the
model ANN-C.

Fig. 10. Comparison of experimental results with the results obtained from the
model ANN-S.

this study, variance account for (VAF), represented by Eq. (2),
and the root mean square error (RMSE), represented by Eq. (3),
were also computed to check the performance of the developed
models [46–50].

VAF =
[

1 − var(y − ŷ)
]

× 100 (2)

var(y)
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Table 4
Details of the optimal ANN performance for different ANN models

Model Number of dataset used for Nhl Transfer function in μ

Training Testing Validation neurons of the hidden layer neuron of the output layer

ANN-C 97 40 34 7 Tan-sigmoid Log-sigmoid 0.01
ANN-S 42 18 15 9 Log-sigmoid Log-sigmoid 0.01
ANN-SS 42 18 15 8 Log-sigmoid Log-sigmoid 0.001
ANN-FS 56 24 20 6 Log-sigmoid Log-sigmoid 0.001
ANN-CS 32 12 12 5 Log-sigmoid Log-sigmoid 0.001
ANN-G 269 112 96 8 Log-sigmoid Log-sigmoid 0.001

Table 5
Connection weights and biases of different ANN models for individual soils

Model Hidden neuron Weight Bias

Input neuron Output neuron Hidden layer Output layer

w γd RT

ANN-C

1 −2.172 5.140 0.776 1.309 3.379
2 3.535 4.567 −1.768 −7.991
3 2.369 −0.660 −1.277 −0.625
4 1.409 7.622 −0.830 −1.891
5 2.380 5.461 −0.566 −4.477
6 −7.802 −2.255 6.407 −0.684
7 −5.639 2.101 0.339 −1.563

ANN-S

1 4.217 16.104 −1.357 −3.758 −14.192
2 14.851 −8.853 4.534 −12.906
3 −17.493 5.725 0.332 7.990
4 −17.616 18.521 9.298 −0.872
5 −11.082 −12.893 8.519 11.679
6 −19.438 11.021 2.465 −0.821
7 −21.358 0.326 1.495 4.720
8 −4.772 −16.248 4.588 3.975
9 −11.427 −12.245 −0.850 0.726

ANN-SS

1 −5.175 −5.745 −0.004 9.692 2.714
2 6.085 5.660 −0.116 −7.952
3 8.052 −0.238 −0.008 −5.285
4 3.903 6.770 0.090 −6.155
5 −8.090 −1.511 0.080 3.678
6 −7.843 −1.124 0.342 1.953
7 −7.873 −0.859 0.540 −0.240
8 −8.274 −1.983 1.720 −0.246

ANN-FS

1 −0.834 −9.103 −1.700 19.376 0.787
2 12.045 −7.015 0.481 −3.095
3 −8.675 −9.578 2.334 11.652
4 −12.407 5.648 1.052 −0.853
5 10.306 −4.657 −4.023 4.925
6 −11.746 −1.933 12.314 −0.380

ANN-CS

1 −10.875 −6.225 1.883 15.476 10.172
2 0.023 12.439 −12.128 −5.687
3 25.371 −18.358 −12.159 1.587
4 6.769 5.3656 −3.711 −3.257
5 −6.161 10.836 3.948 −8.749
RMSE =
√√√√ 1

N

N∑
i=1

(yi − ŷi )2 (3)

where var denotes the variance, y is the measured value, ŷ is
the predicted value, and N is the number of the sample. If VAF
is 100% and RMSE is 0, the model is treated as excellent.

Values of VAF and RMSE for different ANN models are
listed in Table 7, and it can be observed that the individual mod-
els and the generalized model are quite efficient in predicting
soil thermal resistivity, as their R2 are very close to unity. In
addition, experimental results were compared with the results
of the individual ANN models (Figs. 15 and 16), and with the
results of the generalized model ANN-G (Figs. 17 and 18) for
samples used for testing. From Figs. 15 to 18, it can be noted
that the individual models as well as the generalized model pre-
dict thermal resistivity of the soil quite accurately.
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Fig. 11. Comparison of experimental results with the results obtained from the
model ANN-SS.

Fig. 12. Comparison of experimental results with the results obtained from the
model ANN-FS.

6. Comparison of ANN results with empirical relationships

Eqs. (4) and (5) are traditional methods used for predicting
the soil thermal resistivity [1]. In these equations, the thermal
resistivity, RT, is in ◦C cm/Watt; water content, w, is in per-
cent of dry soil weight and γd is the dry unit weight of the soil
(in lb/ft3).
Fig. 13. Comparison of experimental results with the results obtained from the
model ANN-CS.

Fig. 14. Comparison of experimental results with the results obtained from the
model ANN-G.

For silt and clay soils (w � 7%):

RT = [1.3 × logw + 0.29]−1 × 10(3−0.01·γd) (4)

For sandy soils (w � 1%):

RT = [1.01 × logw + 0.58]−1 × 10(3−0.01·γd) (5)
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Table 6
Connection weights and biases of the model ANN-G

Hidden neuron Weight Bias

Input neuron Output neuron Hidden layer Output layer

D10 D30 D50 D70 w γd RT

1 2.856 3.309 3.568 1.897 12.367 −0.675 13.391 0.296 0.296
2 −6.525 −14.043 −17.558 −17.360 −6.658 3.416 3.502 1.916
3 8.172 4.840 3.975 5.698 −17.997 3.892 −6.765 −8.792
4 9.326 5.798 2.153 −12.117 −22.938 −8.809 13.805 −2.086
5 9.321 8.677 6.162 14.907 −6.388 4.229 −3.012 1.565
6 −9.646 −14.947 −12.187 −19.368 −2.201 −4.250 13.537 −2.197
7 0.570 −9.533 3.192 8.239 11.585 −0.555 −15.342 0.346
8 −9.548 −2.444 0.395 18.549 −2.479 −1.953 8.300 −1.826

Table 7
Performance indices for different ANN models

Model Data R2 RMSE (◦C cm/Watt) MAE (◦C cm/Watt) VAF (%)

ANN-C
Training set 0.9979 9.27 6.22 99.79
Testing set 0.9982 9.02 5.88 99.81
Validation set 0.9959 13.53 8.02 99.58

ANN-S
Training set 0.9973 11.83 7.88 99.73
Testing set 0.9961 10.51 8.10 99.73
Validation set 0.9978 12.60 9.18 99.76

ANN-SS
Training set 0.9997 1.77 0.91 99.97
Testing set 0.9993 3.19 1.57 99.91
Validation set 0.9999 0.87 0.56 99.99

ANN-FS
Training set 0.9979 2.92 1.84 99.78
Testing set 0.9977 3.19 2.06 99.71
Validation set 0.9985 2.69 1.78 99.84

ANN-CS
Training set 0.9889 4.88 3.09 98.89
Testing set 0.9824 3.99 2.55 98.31
Validation set 0.9964 2.32 1.92 99.63

ANN-G
Training set 0.9979 10.24 6.82 99.79
Testing set 0.9986 7.99 5.59 99.86
Validation set 0.9979 10.90 6.36 99.78
Table 8
Value of the parameter b

Soil type b

Clay −0.73
Silt −0.54
Silty-sand 0.12
Fine-sand 0.70
Coarse-sand 0.73

Eq. (6) has been developed by researchers [37] based on the
experimental results of different soils, which were tested for
their thermal resistivity by using a laboratory thermal probe. In
this equation, parameter b is noticed to be dependent on the
type of the soil, as listed in Table 8. The proposed expression is
valid for, w � 10% for clays and silts, and w � 1% for sands.

RT = [1.07 × logw + b]−1 × 10(3−0.01·γd) (6)

ANN results RT(ANN) for clay and silt samples with w � 10%
used for testing the individual models ANN-C, ANN-S and
generalized model ANN-G were compared with the RT val-
ues obtained by using Eqs. (4) and (6), as depicted in Figs. 19
and 20. It can be observed from these figures that the ANN
models yield better matching with the experimentally obtained
thermal resistivity values RT(Expt.), as compared to those ob-
tained by using these equations. Similarly, ANN results of the
silty-sand, fine- and coarse-sand samples with w � 1% used for
testing in individual models ANN-SS, ANN-FS and ANN-CS
and generalized model ANN-G were compared with the val-
ues obtained by using Eqs. (5) and (6), as depicted in Figs.
21 and 22. It can be observed from these figures that ANN
models yield better matching with the experimentally obtained
RT values, as compared to those obtained by using Eqs. (5)
and (6). It can also be noted from Figs. 19 to 22 that RT val-
ues obtained by using Eq. (6), developed for individual soils,
are closer to the measured values than those obtained by us-
ing Eqs. (4) and (5). This indicates the importance of para-
meter b (listed in Table 8) in Eq. (6), which is dependent on
the soil type [6]. This further demonstrates that the two in-
put parameters (w and γd) appearing in Eqs. (4) and (5) are
not sufficient enough to predict the RT values for a given
soil.
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Fig. 15. Comparison of experimental results with the results obtained from
models ANN-C and ANN-S.

Fig. 16. Comparison of experimental results with the results obtained from
models ANN-SS, ANN-FS and ANN-CS.

7. Conclusions

In this study, ANN models that can be used for determin-
ing soil thermal resistivity have been developed. For this pur-
pose, experimental results for clay, silt, silty-sand, fine- and
coarse-sands have been used. Individual ANN models, applica-
Fig. 17. Comparison of experimental results with the results obtained from the
model ANN-G for clay and silt samples.

Fig. 18. Comparison of experimental results with the results obtained from the
model ANN-G for silty-sand, fine-, and coarse-sand samples.

ble to each of these soils and consisting of two input parameters
(moisture content and dry density) were developed. While, the
generalized ANN model, applicable to any soil, consists of six
input parameters (D10, D30, D50, D70, moisture content, dry
density). All these models have one output parameter, the soil
thermal resistivity. It has been demonstrated that these ANN
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Fig. 19. Comparison of the results obtained from the individual ANN models
and empirical relationships.

Fig. 20. Comparison of the results obtained from the model ANN-G and empir-
ical relationships.

models are quite efficient in determining thermal resistivity of
various soils and yield thermal resistivity values that match very
well with those obtained experimentally. The ANN models are
found to yield better soil thermal resistivity as compared to the
results obtained by employing the relationships available in the
literature. However, the study highlights the superiority of the
generalized ANN model over individual ANN models, for de-
termining thermal resistivity of any type of soil compacted to a
given state.
Fig. 21. Comparison of the results obtained from the individual ANN models
with empirical relationships.

Fig. 22. Comparison of the results obtained from the model ANN-G with em-
pirical relationships.
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